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On the simulation of a time-dependent cavity flow
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SUMMARY

In this article we present a finite element method for simulating the time-dependent flow of an Oldroyd-
B fluid in a lid-driven cavity, which is a stringent test problem at high Weissenberg number. The
key considerations for developing the methodology are the preservation of the positive definiteness of
the conformation tensor via the log-conformation representation and additional diffusion, from second-
order upwind scheme, to smooth the high-frequency modes. The combination of the log-conformation
representation, finite element method, and an operator-splitting Lie’s scheme, gives us a robust and easy-
to-implement scheme. We have obtained convergent results when simulating time-dependent cavity flows.
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1. INTRODUCTION

Generally, viscoelastic computation in complex flows at high Weissenberg number has proven to
be a tremendous challenge, in particular, for systems where singularities are present. Examples
include cavity flows with a steadily moving lid, and only a limited number of computational
methods provide satisfactory results [1]. There have been few numerical studies of cavity flows
of viscoelastic fluids. Phelan et al. [2] implemented a hyperbolic numerical solution method and
tested their method by considering the cavity flow of a shearing–thinning fluid. Grillet and Shaqfeh
[3] used a perturbation technique to investigate the first effects of elasticity on the flow geometry of
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the semi-cavity flow problem. Grillet et al. [4] studied the numerical modeling of two-dimensional
steady lid-driven cavity flow. They introduced leakage to relieve the corner singularity in the
simulations by including small rounded channels at the corners where the fluid can leak through and
used a mixed finite element with SUPG (streamline upwind/Petrov–Galerkin) stabilization in the
discretization of the constitutive equation for the conformation tensor. In [5], Fattal and Kupferman
used a second-order finite difference scheme to simulate the Stokes flow of an Oldroyd-B fluid
in a lid-driven cavity. They reformulated the constitutive equation as an equation for the matrix
logarithm of the conformation tensor to preserve the property of the positive definiteness of the
conformation tensor, which was developed in their earlier work [6]. To discretize the advection
term in the constitutive equation, they have applied the Kurganov–Tadmor scheme [7] with min-
mod limiter (see e.g. [8] for an extensive reference on limiters). They have pointed out that a
numerical instability that arises from the balance between advection and stretching when solving
the constitutive equation and the log-conformation technique is a better approach.

From the previous work, we have found that there are two important considerations when trying
to simulate time-dependent viscoelastic flows at high Weissenberg number. First, the positive
definiteness of the conformation tensor has to be preserved at the discrete level during the entire
time integration. Besides the technique developed in [5], another attempt for obtaining a positive
definiteness preserving scheme when discretizing the constitutive equation is a recent work by
Lozinski and Owen [9]. They factorize the conformation tensor to get c= AAT and then try to
write down the equations for A approximately at the discrete level. Hence, the positive definiteness
of the conformation tensor is forced with such an approach. In a most recent work [10], Lee and
Xu have developed a unified numerical discretization framework that can be used for simulating
most of the existing constitutive equations in a way that the positiveness of the conformation tensor
of the continuous level can be extended to its discrete analogue. However, the main advantage
of using the log-conformation tensor is that we can better resolve the exponential behavior of
the conformation tensor in the region where there are boundary layers. In this article we have
incorporated the log-conformation tensor technique developed in [5] with an operator-splitting
technique to preserve the positive definiteness of the conformation tensor. Second, the constitutive
equation is a hyperbolic equation and lacks a diffusion term. In [11], an additional diffusion term
added to the constitutive equation for the Oldroyd-B fluid did stabilize the computations. SUPG
methods have been used widely with finite element methods (see [1] and the references therein
for details) to stabilize the numerical schemes used for solving the constitutive equation. The
min-mod limiter used in [5] is known to be very stable but introduces additional diffusion; indeed
the additional diffusion obtained directly or indirectly from the above numerical techniques does
stabilize to some extent the numerical schemes used for solving the constitutive equation. It is the
opinion of the authors that additional (but not too much) diffusion smoothes out some of the high-
frequency modes from the discrete conformation tensor so that the numerical scheme is stabilized.
To reduce the number of high-frequency modes in the first place, we have chosen a finite element
approach for discretizing the conformation tensor defined on a coarser mesh (compared with the
mesh for the velocity field); actually in, e.g. [4, 5, 12], the discrete conformation tensor was also
defined on coarser meshes.

In [13, 14] the technique of log-conformation tensor has been used with finite element methods
to simulate viscoelastic fluid flows past a cylinder. This article is a follow-up of reference [15]
in which the points mentioned above had been taken into account to develop a stable scheme for
the solution of a two-dimensional lid-driven cavity Stokes flow for an Oldroyd-B fluid at high
Weissenberg numbers. In [15] the advection was treated with the first-order upwind scheme which,
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just like the min-mod limiter used in [5], produces too much artificial diffusion. Even though the
lid-driven cavity flow has closed planar streamlines in a simple confined geometry, its conformation
tensor does have sharp boundary layers attached to the lid at high Weissenberg numbers. The
numerical results in [5] and [15] were obtained with uniform meshes and hence, the boundary
layer has not been well resolved. In both [5, 15], some convergent results have been shown but the
ones such as the convergence of the conformation tensor on the lid have not been shown. In this
article we have improved the methodology developed in [15] by applying a second-order upwind
to treat the advection and using non-uniform meshes with very fine mesh close to the lid and
to the left and right sides of the cavity. With these modifications, we have obtained convergent
numerical results for Weissenberg number up to 1. For higher Weissenberg number cases, it is
very difficult to resolve the boundary layer of the conformation tensor since its maximum value
has shown an exponential relation to the Weissenberg number as discussed in Section 4 unless
we use extremely fine meshes close to the lid. In the following section, we first introduce the
formulation of the problem. Then we discuss how to apply Lie’s scheme to split the constitutive
equation into subproblems and how to reformulate those subproblems via the technique developed
in [5]. In Section 3, we discuss the space and time discretizations together with numerical methods
for solving the subproblems. Numerical results are presented in Section 4.

2. FORMULATION OF THE PROBLEM

We consider a two-dimensional lid-driven cavity Stokes flow for an Oldroyd-B fluid. Let �=
(0,1)×(0,1) be the region occupied by the fluid, � the boundary of � and T>0 (see Figure 1).
The flow model problem is governed by

−∇p+�s�u+ �p
�1

∇ ·c=0 in �×(0,T ) (1)

∇ ·u=0 in �×(0,T ) (2)

�c
�t

+(u·∇)c−(∇u)c−c(∇u)T= 1

�1
(I−c) in �×(0,T ) (3)

c(0)=c0 in � (4)

u=g(t) on �×(0,T ) with
∫

�
g(t) ·nd�=0 on (0,T ) (5)

Here u and p are the flow velocity and pressure, c is the conformation tensor, �s and �p are the
solvent and polymer viscosities, �1 is a characteristic relaxation time for the fluid, while n is the
unit outward normal vector at the boundary �. We use the notation v(t) to denote the function
x→v(x, t) in (4), (5) and below.

For g(t) in (5), we have chosen the same regularized boundary condition given in [5]:

g(x, t)=
{

(g(x, t),0)T on {x|x=(x,1)T,0<x<1}
(0,0)T otherwise on �

(6)

with g(x, t)=8(1+ tanh 8(t−0.5))x2(1−x)2. The discontinuity of the velocity field at the two
upper corners has been removed in (6). The inflow boundary conditions for the conformation
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Ω

Γ

Figure 1. Lid-driven flow in a square cavity.

tensor c is not needed since there is no inflow boundary for this case. The Weissenberg number
is Wi=�1U/L where U and L are the characteristic velocity and length scale. With U =1 as the
speed from the lid and L=1 as the width of the cavity, Wi=�1.

We have applied an operator-splitting technique, namely, Lie’s scheme [16], to solve (1)–(5).
Lie’s scheme is first-order accurate, but its low-order accuracy is compensated by easy implemen-
tation, less cost in computational time, good stability, and robustness properties. For example, it
has been successfully applied to develop numerical methods for simulating the interaction of solid
particles and fluid (see, e.g. [17–19]). Let �t be a time discretization step and tn =n�t . Applying
the operator-splitting technique to (1)–(5) yields:

For n�0, cn being known, we compute first un+1(≈u(tn+1)) and pn+1(≈ p(tn+1)) via the
solution of the following problem:

−∇pn+1+�s�un+1=− �p
�1

∇·cn in � (7)

∇·un+1=0 in � (8)

un+1=g(tn+1) on � (9)

Next, we compute cn+1 via the following steps: first solve

�c
�t

+(un+1 ·∇)c=0 in �×(tn, tn+1) (10)

c(tn)=cn in � (11)

and set cn+1/2=c(tn+1). Then solve

�c
�t

−(∇un+1)c−c(∇un+1)T+ 1

�1
c= 1

�1
I in �×(tn, tn+1) (12)

c(tn)=cn+1/2 in � (13)

and set cn+1=c(tn+1).
To keep c positive definite, we have combined in the following the matrix logarithm of the

conformation tensor developed in [5, 6] with the above operator-splitting scheme. But first, for
a symmetric positive definite matrix c, we have that w= logc. (Recall that a symmetric positive
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definite matrix A can always be diagonalized as A= R�RT, and that log A= R log�RT.) In [6], it
was shown that with un being a divergence-free velocity field and c a symmetric positive definite
tensor field, the velocity gradient ∇un can be decomposed as

∇un =xn+Bn+Nnc−1 (14)

where xn and Nn are skew-symmetric, and Bn is symmetric, trace free, and commutes with c.
Using these matrices, we obtain the following variant of scheme (7)–(13):

For n�0, cn (and wn = logcn) being known, we compute first un+1 and pn+1 via the solution
of the following problem:

−∇pn+1+�s�un+1=− �p
�1

∇ ·cn in � (15)

∇·un+1=0 in � (16)

un+1=g(tn+1) on � (17)

Next, we compute wn+1 via the following steps: first solve

�w
�t

+(un+1 ·∇)w=0 in �×(tn, tn+1) (18)

w(tn)=wn in � (19)

and set wn+1/2=w(tn+1). Then solve

�w
�t

−[xn+1w−wxn+1]−2Bn+1= 1

�1
(e−w−I) in �×(tn, tn+1) (20)

w(tn)=wn+1/2 in � (21)

and set wn+1=w(tn+1) and cn+1=ew
n+1

.

Remark 1
To compute x, B, and N from a divergence-free velocity field u for a two-dimensional case, we
can use the following formulas given in [6]: (i) If c is proportional to the unit tensor then set
B=(∇u+(∇u)T)/2 and x=0. (ii) Otherwise, diagonalize c via

c= R

(
�1 0

0 �2

)
RT (22)

and set (
m11 m12

m21 m22

)
= RT(∇u)R (23)

Then,

N = R

(
0 n

−n 0

)
RT, B= R

(
m11 0

0 m22

)
RT, x= R

(
0 s

−s 0

)
RT (24)

with n=(m12+m21)/(�
−1
1 −�−1

2 ), and s=(�2m12+�1m21)/(�2−�1).

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:791–808
DOI: 10.1002/fld



796 T.-W. PAN, J. HAO AND R. GLOWINSKI

Remark 2
Subproblem (18) and (19) is an advection problem. To solve it we advocate the wave-like equation
method discussed below. The idea of solving advection-dominated problems via the solution
of associated wave-like equations is not new; it has been advocated, for example, in [20] for
the solution of the shallow water equations and in [21] for the solution of multidimensional
transport problems. It was first introduced in [22] (to our knowledge) when the wave-like equation
method was combined by an operator-splitting technique to solve the Navier–Stokes equations
for incompressible fluid flow. The method has been tested with the classical wall-driven cavity
flow for Reynolds number up to 10 000 [23, 24] and the wall-driven flow in a two-dimensional
semi-circular cavity with unstructured meshes for Reynolds number up to 8000 [25]. More results
can be found in, e.g. [17–19].

Each entry of the matrix w in (18) and (19) satisfies a transport equation of the following type:

��

�t
+V ·∇� = 0 in �×(tn, tn+1)

�(tn) = �0 in �

(25)

with ∇·V=0 and �V/�t=0 on (tn, tn+1).
Using the properties ∇ ·V=0 and �V/�t=0 on �×(tn, tn+1), we have that problem (25) is

‘equivalent’ to the (formally) well-posed problem:

�2�
�t2

−∇·((V ·∇�)V) = 0 in �×(tn, tn+1)

�(tn) = �0,
��

�t
(tn)=−V ·∇�0

V ·n
(

��

�t
+V ·∇�

)
= 0 on �×(tn, tn+1)

(26)

Solving the wave-like equation (26) by a classical finite element/time-stepping method is quite
easy since a variational formulation of (26) is given as

∫
�

�2�
�t2

v dx+
∫

�
(V ·∇�)(V ·∇v)dx = 0 ∀v∈H1(�) a.e. on (tn, tn+1)

�(tn) = �0,
��

�t
(tn)=−V ·∇�0

(27)

since we have V ·n=0. A solution method for problem (27) will be described in the following
section.

Remark 3
Actually, subproblem (20) and (21) can be solved directly using a further splitting, namely,

�w
�t

−[xn+1w−wxn+1]−2Bn+1=0 in �×(tn, tn+1) (28)

w(tn)=wn+1/2 in � (29)
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and set w̃
n+1=w(tn+1) and c̃n+1=ew̃

n+1

. Then solve

�c
�t

= 1

�1
(I−c) in �×(tn, tn+1) (30)

c(tn)= c̃n+1 in � (31)

and set cn+1=c(tn+1) and wn+1= log(cn+1).
The closed-form solutions of the above two subproblems can be obtained easily (at least for

two-dimensional flows).

3. SPACE AND TIME DISCRETIZATIONS

Concerning the space approximation, we use P1-iso-P2 and P1 finite elements for the velocity field
and pressure, respectively (as, e.g. in [26, 27]). More precisely, with h as the space discretization
step we introduce a finite element triangulationTh of � and thenT2h a triangulation twice coarser
(in practice we should construct T2h first and then Th by joining the midpoints of the edges of
T2h , dividing thus each triangle of T2h into four similar subtriangles, as shown in Figure 2).

Next, we define the following finite-dimensional spaces:

Vgh(t) ={vh |vh ∈(C0(�))2,vh |T ∈ P1×P1 ∀T ∈Th,vh |� =gh(t)} (32)

V0h ={vh |vh ∈(C0(�))2,vh |T ∈ P1×P1 ∀T ∈Th,vh |� =0} (33)

L2
h ={qh |qh ∈C0(�),qh |T ∈ P1 ∀T ∈T2h} (34)

L2
0h =

{
qh |qh ∈L2

h,

∫
�
qh dx=0

}
(35)

in (32)–(35), gh(t) is an approximation of g(t) verifying
∫
� gh(t) ·nd�=0 and P1 is the space of

the polynomials in two variables of degree �1. The discrete conformation tensor belongs to

W2=
{
Ah |Ah =

(
A1,h A2,h

A2,h A3,h

)
, Ai,h ∈L2

h, i=1,2,3

}
(36)

Using these finite element spaces, we obtain the following realization of scheme (15)–(21) (after
dropping some of the subscripts h):

Figure 2. Subdivision of a triangle of T2h .
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For n�0, cn (and wn) being known, we compute first un+1 and pn+1 via the solution of the
following problem:∫

�
pn+1∇ ·vdx−�s

∫
�
∇un+1 :vdx = − �p

�1

∫
�
(∇·cn) ·vdx ∀v∈V0h∫

�
q∇·un+1 dx = 0 ∀q∈L2

h

un+1 ∈ V n+1
gh , pn+1∈L2

0h

(37)

Next, we compute wn+1=
(

�n+1
1

�n+1
2

�n+1
2

�n+1
3

)
via the following steps: first solve

∫
�

�2�i

�t2
v dx+

∫
�
(un+1 ·∇�i )(u

n+1 ·∇v)dx = 0 ∀v∈L2
h on (tn, tn+1)

�i (t
n) = �n

i ,
��i

�t
(tn)=−un+1 ·∇�n

i ; �i (t)∈L2
h

(38)

for i=1,2,3, and set wn+1/2=
(

�1(t
n+1)

�2(tn+1)

�2(t
n+1)

�3(tn+1)

)
. Then solve

∫
�

[
�w
�t

−(xn+1w−wxn+1)−2Bn+1

]
:Tdx

=
∫

�

[
1

�1
(e−w−I)

]
:Tdx ∀T∈W2 on (tn, tn+1) (39)

w(tn)=wn+1/2; w(t)∈W2 (40)

and set wn+1=w(tn+1) and cn+1=ew
n+1

.
In (37), V n+1

gh =Vgh(tn+1), and

A : B=a11b11+a12b12+a21b21+a22b22 for A=
(
a11 a12

a21 a22

)
, B=

(
b11 b12

b21 b22

)

At each step in the above scheme, we encounter simpler subproblems that can be solved by
simple and standard numerical methods. First, the Stokes problem (37) is a classical problem and
has been solved by an Uzawa/conjugate gradient algorithm [17], in which a sequence of elliptic
problems have been solved by a red–black SOR iterative method. The wave-like equation (38) is
solved by the following time-stepping method with its own local sub-timestep:

We first define a sub-timestep, �1>0, by �1=�t/Q1, where Q1 is a positive integer and we
time discretize problem (38) by

�0=�0 (41)∫
�
(�−1−�1)v dx = 2�1

∫
�
(V ·∇�0)v dx ∀v∈L2

h

�−1−�1 ∈ L2
h; �−1−�1=0 on �

(42)
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and for q=0, . . . ,Q1−1,

�q+1 ∈ L2
h∫

�

�q+1+�q−1−2�q

�21
v dx+

∫
�
(V ·∇�q)(V ·∇v)dx = 0 ∀v∈L2

h

(43)

where, in (41) and (43), �0 is the initial value and V=un+1.
When solving subproblem (39) and (40), we have applied the trapezoidal rule to get a pointwise

differential equation at each grid point and then solve it via the further splitting discussed in
Remark 3. In (39), ∇un+1 is computed via second-order difference scheme on the mesh points
used for the conformation tensor and then xn+1 and Bn+1 are computed according to (22)–(24).

Remark 4
Scheme (41)–(43) is a centered scheme, which is formally second-order accurate with respect to
space and time discretizations. To be stable, scheme (41)–(43) has to verify a condition such as

�1�ch (44)

with c of the order of 1/‖V‖. Since the advection problem is decoupled from the rest, we can
choose the proper time step here so that the above condition is satisfied. Here, we have used the
trapezoidal rule to compute the first integral in (43); the above scheme becomes explicit, i.e. �q+1

is obtained via the solution of a linear system with a diagonal matrix. Another detail is that at
each time step in scheme (41)–(43) we do not update the values of �q at the boundary grid points
not located on the top lid since we have V=0.

Scheme (41)–(43) has a flavor of the streamline-diffusion methods. For example, when we set
Q1=1, (41)–(43) becomes

∫
�

�1−�0

�t
v dx+

∫
�
(V ·∇�0)v dx+ �t

2

∫
�
(V ·∇�0)(V ·∇v)dx=0 ∀v∈L2

h; �1∈L2
h (45)

The third term in (45) is a naturally built-in diffusion term only acting in the direction of streamlines.
When computing V ·∇ f in (42) and (43), the first-order upwind scheme used in [15]

produces too much artificial diffusion. We have applied the second-order upwind scheme in this
article.

4. NUMERICAL RESULTS

In this section we consider the numerical results for the lid-driven cavity Stokes flow by the
numerical schemes described in the above sections. The boundary condition for the velocity field
in (6) is given as

g(x, t)=
⎧⎨
⎩

(g(x, t),0)T on {x|x=(x,1)T,0<x<1}

(0,0)T otherwise on �
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Figure 3. An example of mesh Th for N =32.

with g(x, t)=8(1+ tanh8(t−0.5)x2(1−x)2); this choice gives a smooth start and for t� 1
2 , the

lid velocity attains its maximum, u=(1,0)T, and at the center, x=1/2. The initial condition for
c is c0=I. Both the viscosities, �s and �p, in all calculations are equal to 1. The relaxation times
�1 considered here are 0.5 and 1 (so the Weissenberg numbers are 0.5 and 1, respectively).

The mesh T2h for the pressure is a triangular mesh obtained in the following way. We have
chosen points y j =1−(1−2 j/N )2, for j =0,1, . . . ,N/2, in the y-direction and in the x-direction,
we first choose xi =2(2i/N )2, for i=0,1, . . . ,N/4, and then set xi =1−xN/2−i , for i=N/4+
1, . . . ,N/2. Using lines x= xi and y= y j , for i, j =1, . . . ,N/2−1, we divide the unit square into
smaller rectangles and each rectangle is divided into two triangles. After obtaining the triangular
mesh for the pressure, we joined the midpoints of the edges of each triangle to divide it into four
smaller triangles, as shown in Figure 2, to obtain the mesh for the velocity field. In Figure 3 an
example mesh for the velocity field for N =32 is shown. With non-uniform triangular meshes, the
discrete elliptic problems arising from the Uzawa conjugate gradient algorithm at each iteration
have been solved by a red–black SOR iterative method. We have parallelized the code via OpenMP
and run it on quad-core CPUs to speed up the computation. To obtain stationary state we need to
reach t=20 (resp., 30) for We=0.5 (resp., We=1).

4.1. Wi=0.5

This is a ‘good’ test case since the Weissenberg number is not too high. The results obtained
with N =256, 288, and 320 are computed with the time steps �t=0.0015,0.0012, and 0.001,
respectively. The kinetic energy grows as the lid accelerates, reaches a maximum at the end of
the acceleration, and decreases toward a steady value as elastic energy builds up. The history
of the kinetic energy, 1

2‖uh‖22, and the history of the elastic energy,
∫
�(c11+c22)dx, are shown

in Figure 5. We have obtained a steady-state solution for Wi=0.5 as shown by the kinetic
and elastic energy in Figure 5. The streamlines and the density plots of �i j obtained with
N =256 at t=20 are shown in Figure 4. The smallest value of the stream function obtained
with N =256 and �t=0.0015 is −0.07000558 at (0.4692383,0.7981873). The cross sections
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Figure 4. The density plots of �11 (upper left), �12 (lower left), �22 (lower right), and the streamlines
(upper right) obtained with N =256 at t=20 for Wi=0.5.

of �i j at x=0.5 and at y=1, ci j at y=1 and u1 at x=0.5 and u2 at y=0.75 are shown in
Figures 5 and 6. These results show the convergence when reducing the mesh size and time
step. As shown in Figures 5 and 6, c11 and c22 do have sharp boundary layer attached to the
lid. The center of the core vortex region shifts in the upstream direction as observed in the
experiments [28].

4.2. Wi=1

In this section the results obtained with N =288, 320, and 352 are computed with the time steps
�t=0.0015,0.0012, and 0.001, respectively. The kinetic energy and elastic energy behave like
those of the case Wi=0.5. Their histories are shown in Figure 7. We have obtained a steady-state
solution forWi=1. The smallest value of the stream function obtained with N =352 and �t=0.001
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Figure 5. Histories of the kinetic energy (upper left) and the elastic energy (upper right),
and the cross section of c11(x,1) (middle left), c22(x,1) (middle right), u1(0.5, y) (lower
left), and u2(x,0.75) (lower right) at t=20 obtained with N =256 (dashed line), 288

(dash-dotted line), and 320 (solid line) for Wi=0.5.
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Figure 6. The cross section of �11, �12, and �22 (from top to bottom) at x=0.5 (left) and y=1 (right)
obtained with N =256 (dashed line), 288 (dash-dotted line), and 320 (solid line) at t=20 for Wi=0.5.
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Figure 7. Histories of the kinetic energy (upper left) and the elastic energy (upper right), the
cross section of c11(x,1) (middle left), c22(x,1) (middle right), u1(0.5, y) (lower left), and
u2(x,0.75) (lower right) at t=30 obtained with N =288 (dashed line), N =320 (dash-dotted

line), and N =352 (solid line) for Wi=1.
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Figure 8. The cross section of �11, �12, and �22 (from top to bottom) at x=0.5 (left) and y=1 (right)
obtained with N =288 (dashed line), 320 (dash-dotted line), and 352 (solid line) at t=30 for Wi=1.
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Figure 9. The exponential curve fitting for the maximum of c11 and Wi.

is −0.06383407 at (0.4394693,0.8159704). The cross sections of �i j at x=0.5 and at y=1, c11
and c22 at y=1 and u1 at x=0.5 and u2 at y=0.75 are shown in Figures 7 and 8. These results
show the convergence when reducing the mesh size and time step. As shown in Figures 7 and
8, the boundary layer of c11 attached to the lid becomes much higher. The maximum of c11 is
11 529.43 obtained with N =352 at t=30.

The largest values of �11 at x=0.5 shown in [5] for Wi=1 are less than 7. Our values shown
in Figure 8 are about 9.33. We believe that these values obtained in [5] for Wi=1 were not well-
resolved due to the use of uniform meshes that are not very fine mesh close to the lid. In addition,
they might be smoothed out by the numerical diffusion produced by the Kurganov–Tadmor scheme
with min-mod limiter used in [5].

4.3. The growth of c11

Using the curve fitting for the maximum of c11 obtained at Wi=0.5,0.65,0.75, and 1, we have
obtained the relation c11(Wi)=e1.9346+7.4667Wi and its plot is shown in Figure 9. It gives us a hint
that we need very fine meshes to resolve the boundary layer for the cases of Weissenberg number
higher than 1.

5. CONCLUSION

We have presented a finite element method for simulating the time-dependent flow of an Oldroyd-B
fluid. This method is robust and easy to implement when simulating time-dependent cavity flows
at high Weissenberg numbers. The log-conformation representation and the fine mesh next to the
lid do help significantly when dealing with the conformation tensor at high Weissenberg number.
The numerical treatment of the advection term is also crucial. The method of characteristics could
be another choice for solving the advection problem as done in [10, 29] to preserve the positive
definiteness of the conformation tensor when using operator-splitting techniques.
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